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Look out there. Out there is the
perfect lap. No mistakes. Fvery gear
change, every corner, perfect. You see
1t? Most people can’t. Most people
don’t even know it’s out there, but it
1s. It’s there.

Ken Miles — Ford v Ferrari
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Abstract

Quality Diversity (QD) refers to a class of evolutionary algorithms that focus on finding
high-performing yet diverse solutions. They have been applied in several areas, including
the exploration of search spaces for video game content. In this thesis, we investigate the
use of quality diversity algorithms as tools for the procedural generation of racing tracks
for the TORCS [1| and Speed Dreams [2] open-source racing games; the two games use
an almost identical representation of the tracks. Specifically, we apply the MAP-Elites
algorithm [3] to generate racing tracks for these games, automatically using evaluation
functions computed by simulating racing competitions with existing Als. Our methodol-
ogy involved developing novel genotype representations based on Voronoi diagrams and
convex hulls, an end-to-end pipeline for generation and evaluation, and the use of dimen-
sionality reduction for robust behavioral characterization.

Keywords: Quality Diversity, MAP-Elites, Procedural Content Generation, Racing
Tracks, TORCS, Evolutionary Algorithms
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Abstract in lingua italiana

La Quality Diversity (QD) denota una classe di algoritmi evolutivi che si concentrano sulla
ricerca di soluzioni ad alte prestazioni ma diverse tra loro. Sono stati applicati in diverse
aree, inclusa l'esplorazione dello spazio delle soluzioni per i contenuti dei videogiochi.
In questa tesi, indaghiamo 'uso di algoritmi di quality diversity come strumenti per la
generazione procedurale di tracciati di gara per i giochi di corsa open-source TORCS
[1] e Speed Dreams [2|; i due giochi utilizzano una rappresentazione quasi identica dei
tracciati. In particolare, applichiamo l'algoritmo MAP-Elites 3] per generare tracciati
di gara per questi giochi, utilizzando automaticamente funzioni di valutazione calcolate
simulando competizioni di gara con IA esistenti. La nostra metodologia ha comportato
lo sviluppo di nuove rappresentazioni genotipiche basate sui diagrammi di Voronoi e sugli
inviluppi convessi, una pipeline end-to-end per la generazione e la valutazione, e 1'uso
della riduzione della dimensionalita per una robusta caratterizzazione comportamentale.

Parole chiave: Quality Diversity, MAP-Elites, Generazione Procedurale di Contenuti,
Tracciati di Gara, TORCS, Algoritmi Evolutivi
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]_ Introduction

Video game creation demands significant resources for content production. Level design,
a central aspect of this process, involves constructing playable environments. Generating
sufficient content for engaging experiences and replayability presents a challenge. Pro-
cedural content generation (PCG) addresses this by automatically creating digital assets
through predefined algorithms, a technique utilized in many games to provide varied
gameplay experiences and reduce manual design overhead.

A key challenge in PCG involves generating content that exhibits high performance and
broad diversity. Traditional optimization methods often focus on maximizing a single
objective, leading to a single best solution. However, diverse player preferences and
game contexts require a wider range of high-quality solutions. Quality Diversity (QD)
algorithms offer a different approach. They identify numerous high-performing solutions
distributed across a behavior space, drawing inspiration from biological evolution. This
approach helps explore the search space comprehensively.

This thesis investigates the application of Quality Diversity algorithms to the procedu-
ral generation of racing tracks. Specifically, the research applies the Multi-dimensional
Archive of Phenotype Elites (MAP-Elites) algorithm to generate tracks for the open-
source racing simulators TORCS and Speed Dreams. The system automatically evaluates

generated tracks using functions derived from simulated racing competitions with existing
Al drivers.

This work develops novel genotype representations based on Voronoi diagrams and con-
vex hulls, an end-to-end pipeline for track generation and evaluation, and incorporates
dimensionality reduction for robust behavioral characterization. The research began with
preliminary experimentation to quantify the inherent noisiness of emergent gameplay
features. This analysis informed the selection of robust behavioral descriptors and the
refinement of the fitness function by mitigating unreliable metrics that were susceptible
to simulation noise.

Following this, correlation and clustering analyses were conducted to understand met-
ric relationships, and dimensionality reduction techniques were employed for behavioral
descriptor generation.

The subsequent chapters detail this research. Chapter 2 presents background on track
design in racing games, procedural content generation, and Quality Diversity algorithms.
Chapter 3 outlines the methodology, discussing TORCS, track representations, genetic
operators, and the MAP-Elites implementation using Pyribs. Chapter 4 provides results
from these preliminary analyses and the main experiments, which involved running the



MAP-Elites algorithm to generate tracks and comparing the performance of the different
track representations. Chapter 5 concludes the thesis, summarizes key findings, and
proposes future research directions.



2 ‘ Background and Related Work

2.1. Track design in racing games

Racing games have undergone significant evolution since their inception, becoming a cor-
nerstone of the gaming industry. A crucial aspect of this evolution lies in the racing
tracks, which have transformed from simple layouts to dynamic and immersive environ-
ments. The journey began with Space Race (1973) by Atari [4], where players guided
rockets in a race against time. Although its mechanics were simplistic and it wasn’t
strictly a racing game, it introduced the concept of dynamic competition in a digital envi-
ronment. While track design was non-existent in this title, it set the stage for later games
to explore the importance of environment in shaping gameplay. A decade later, Namco
raised the bar with Pole Position (1982) [5], a landmark title featuring realistic track
layouts and racing mechanics. Players raced on circuits modeled after real-life tracks,
striving to master lap times. Pole Position established the template for modern racing
games by emphasizing track realism, blending player skill with immersive visuals that
made the tracks feel dynamic.

L
THIS YEARS'S ARCADE HIT WITH REAL MOTION GRAPHICS

Figure 2.1: Screenshot of Namco’s Pole Position (1982), a landmark title emphasizing

track realism.



In 1986, Sega’s Out Run further revolutionized the genre by offering a non-linear driving
experience with multiple routes and a choice of background music. This branching track
design introduced replayability and personalization, as players could choose their path
through the game. The innovation of diverging tracks highlighted how design decisions
could elevate player engagement, making tracks an active element in gameplay rather
than a static backdrop. [6] The 1990s introduced futuristic racing with Nintendo’s F-
Zero (1990), utilizing the SNES’s Mode 7 graphics to create a sense of 3D racing on
a 2D console. The game’s track design set a new standard for speed and challenge,
featuring winding layouts that required precise control. The high-speed tracks of F-
Zero were designed to test players’ reflexes, with narrow paths and sharp turns that
became defining features of the genre. [7| Two years later, Sega’s Virtua Racing (1992)
introduced 3D polygonal graphics to the racing genre, providing multiple camera angles
and a more immersive experience. This leap to 3D allowed for more complex track designs,
incorporating elevation changes and varied layouts that pushed players to adapt their
strategies. Virtua Racing laid the groundwork for future 3D racing games to experiment
with both realistic and fantastical track environments. [§]
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Figure 2.2: Screenshot from Sega’s Virtua Racing (1992), showcasing early 3D polygonal

graphics in racing games.

Across these early franchises, a common design challenge emerged: the delicate balance
between realism and player accessibility. Since then, each franchise has introduced its
unique vision of what a racing experience should be. Super Mario Kart, introduced in
1992 [9], transformed the notion of track design into a playground of creativity. The
tracks featured fantastical elements, such as shifting terrains, environmental hazards,
and interactive obstacles such as thwomps and banana peels. These elements introduced
unpredictability and tactical decision-making, turning the tracks into dynamic arenas of
engagement rather than precise technical courses. Shortcuts, hidden paths, and power-
ups added depth, allowing players to develop strategies beyond pure speed. Mario Kart’s
approach redefined the genre, introducing accessibility and chaos that broadened the
appeal of racing games, particularly for social gatherings and younger players.



In 1997, Polyphony Digital released Gran Turismo, a game that set new standards for
realism in racing simulations. [10] The series has continued to evolve, with Gran Turismo
7 releasing on March 4, 2022, for PlayStation 4 and PlayStation 5 [11]. Developers employ
advanced techniques such as laser scanning to replicate every incline, camber, and surface
variation, making tracks not just backdrops but dynamic environments that challenge
players’ technical skills. The mastery of the track in Gran Turismo requires precision in
braking points, throttle control, and cornering, reflecting the depth that detailed track
design brings to the genre. Similarly, Assetto Corsa, developed by Kunos Simulazioni, has
been acclaimed for its realistic driving simulation and focus on detailed track recreation.
[12] The original game was released on December 19, 2014, and its successor, Assetto Corsa
EVO, entered Early Access on January 16, 2025 [13]. The series emphasizes authentic
car handling and utilizes laser-scanned tracks to achieve unparalleled realism. Each track
demands technical precision from the players, as variations in elevation, camber, and
cornering complexity provide a challenging and rewarding experience. This attention
to detail makes Assetto Corsa a standout example of how track design can elevate the
simulation genre. Since 2015, the Milestone s.r.l.-developed The Ride series is also notable
for its authentic motorcycle handling and extensive customization options. [14| Tracks
in Ride are designed to highlight the dynamics of motorcycle racing, offering players
challenges that emphasize tight cornering, elevation changes, and the interplay of speed
and control. By bringing motorcycles into the simulation genre, Ride expands the diversity
of track design within racing games.

These simulation-focused titles demonstrate a clear design philosophy: the track is a tech-
nical puzzle to be solved. Quality is therefore measurable through geometric properties
that create challenge—complex corner combinations, variations in camber that affect grip,
and sequences that demand precise rhythm from the driver.



Figure 2.3: Screenshot from The Ride series, illustrating its focus on realistic motorcycle

racing.

In contrast, the Forza Horizon series, developed by Playground Games, offers a more
arcade-like experience with open-world environments. [15] The first installment was re-
leased on October 23, 2012, and the latest, Forza Horizon 5, launched on November 9,
2021 [16]. Set in a fictionalized representation of Mexico, Forza Horizon 5 features di-
verse landscapes, including rocky mountain paths, lush forests, and arid deserts. Tracks
in Forza Horizon invite exploration and reward players for embracing risk-taking and
experimentation. The open-world format encourages players to explore unconventional
routes and off-road adventures, creating a sense of freedom rarely found in structured
racing games. Dynamic weather further enhances the challenge, as players must adapt to
conditions like rain-slicked roads or fog-obscured paths. This flexibility and variety make
track design in Forza Horizon a key component of its appeal.

Further expanding the concept of track diversity is the rise of user-generated content,
exemplified by the TrackMania series [17]. By providing players with intuitive yet powerful
track editors, these games outsource content creation to the community, resulting in a
virtually limitless repository of circuits ranging from simple loops to complex, physics-
defying challenges. This paradigm underscores the value of exploring a vast design space,
a principle central to procedural generation.

Customization of vehicles also emerges as a crucial aspect of racing game design, closely
tied to track demands. Need for Speed, Forza, and Ride stand out, offering players op-
portunities to tailor their vehicles for specific track conditions. Adjusting parameters like
tire grip, suspension stiffness, and aerodynamic profile allows players to align their per-
formance with the unique demands of each track. This level of customization deepens
the player’s connection to the game, as vehicles become extensions of their strategies.



Tracks, as a core element of racing games, intertwine technical and creative dimensions.
Fundamental elements such as race lines and clipping points delineate optimal paths while
variations in track width and camber offer overtaking opportunities. Height variations add
complexity and can be used by artists to increase the visual appeal of the gameplay. Vi-
sual cues such as road markings, environmental details, and distinctive landmarks ensure
players remain oriented during high-speed races. Track design, with all these elements,
shapes the immediate racing experience.

2.2. Procedural Content Generation (PCG) in racing
game development

Procedural Content Generation (PCG) is the automated creation of digital assets using
predefined algorithms that require minimal user input. This approach allows for the
dynamic generation of diverse and engaging content, significantly enhancing the scalability
and variability of game design [18]. Notable examples of PCG in the video game industry
include Minecraft, where PCG generates vast, block-based landscapes filled with biomes,
caves, and intricate underground networks. Similarly, games like Spelunky and Diablo II1
leverage PCG to enrich replayability by randomizing caves, dungeons, and loot systems.
The Binding of Isaac, another acclaimed game, incorporates PCG in its dungeon design,
offering randomly generated rooms, enemies, and items with every playthrough. This
randomness makes each session challenging and unpredictable, requiring players to adapt
their strategies constantly. No Man’s Sky stands out for its groundbreaking use of PCG
to create a procedurally generated universe, featuring over 18 quintillion unique planets,
each with its own ecosystems, terrains, flora, and fauna. This scale guarantees players
will encounter fresh discoveries, fostering a sense of endless adventure.

Togelius, Yannakakis, Stanley, and Browne [19] propose a comprehensive taxonomy of
PCG methodologies, delineating several approaches:

1. Online vs. Offline Approaches: Online methods dynamically generate content
during gameplay, responding to player actions in real time. Offline methods, by
contrast, pre-generate content during the development phase, ensuring stability and
thorough testing before deployment. Online PCG emphasizes real-time efficiency
and adaptability, while offline PCG prioritizes quality assurance and pre-emptive
debugging.

2. Stochastic vs. Deterministic Methods: Stochastic methods leverage probabilis-
tic algorithms to introduce variability and unpredictability, enhancing replayability.
Deterministic methods are based on predefined rules that ensure consistent and
predictable outcomes. For example, stochastic generation can create diverse ter-
rains and environments, while deterministic methods ensure critical elements, e.g.,
pathways or quest objectives, remain intact and balanced.

3. Constructive vs. Generate-and-Test Methods: Constructive methods focus
on generating content that is immediately usable and adheres to quality standards
without requiring additional refinement. In contrast, generate-and-test methods
iteratively produce, evaluate, and optimize content to achieve desired outcomes,



often requiring more computational resources but yielding highly tailored results.
Generate-and-test methods employ fitness functions to evaluate and refine content
iteratively, ensuring alignment with predefined quality metrics.

The fitness function of generate-and-test methods can be direct (fast to compute and
well-suited for representation with few features), simulation-based (testing the content
in a simulated environment), or evaluated by humans through game data or question-
naires. Simulation-based fitness functions are especially useful in games with complex
interactions, as they can simulate and evaluate player behaviors or Al interactions to
refine content. Procedural techniques can also be categorized as assisted and non-assisted
methods. Assisted techniques require significant user intervention, offering precise control
and customization, while non-assisted methods generate content autonomously, suitable
for large-scale environments or real-time generation.

Referring to the taxonomy of PCG approaches just defined, Search-Based Procedural
Content Generation (SBPCG) represents a specialized subset of generate-and-test PCG.
SBPCG utilizes search algorithms, such as evolutionary computation, to explore a vast
space of possible game assets. By iteratively generating, evaluating, and refining con-
tent against specific criteria, SBPCG ensures that assets meet predefined goals for qual-
ity, balance, and player engagement. As seen in terrain and city generation, iterative
methods such as genetic algorithms play a critical role in generating optimized content
through repeated cycles of evaluation and refinement. Additionally, SBPCG can employ
multi-objective optimization to balance competing goals, such as difficulty, aesthetics, and
playability.
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Figure 2.4: Conceptual diagram of the Search-Based Procedural Content Generation
(SBPCG) Loop.

An extension of SBPCG is Evolutionary Algorithms (EAs), which are inspired by the
principles of natural selection. The solutions are optimized following a framework where
the concepts of genotype and phenotype are fundamental to the outcome of the search.
Genotypes are low-level representations that the algorithm manipulates, while pheno-
types represent the actual solutions evaluated by the fitness function. Effective genotype
design is essential to maintain locality, ensuring that small changes in the genotype re-
sult in proportionally small changes in the phenotype. This balance facilitates efficient
exploration of the solution space. Direct encoding maps a genotype to a phenotype, sim-
plifying implementation but often resulting in larger search spaces. Indirect encoding, on
the other hand, employs compact representations such as random seeds to reduce search
space complexity. While this approach is more efficient, it may sacrifice some granularity
in solution refinement. For instance, indirect encoding is effective for generating large
terrains or intricate mazes, while maintaining computational efficiency.

Notably, Togelius et al. [20, 21| and Loiacono et al. [22] evolved tracks optimized for
factors such as challenge levels and driving styles, using evolutionary algorithms. These
methods involve defining fitness functions that guide the evolutionary process toward
desirable track features. Fitness functions play a crucial role in guiding evolutionary algo-
rithms, serving as criteria to evaluate and select content for survival and reproduction. In



racing track generation, fitness functions may measure quantifiable aspects such as track
length, curvature, and difficulty. For example, Togelius et al. [20] used fitness functions
to balance playability and challenge in evolving tracks. Simulation-based approaches, on
the other hand, evaluate tracks through gameplay simulations, often using Al-controlled
agents. Interactive fitness functions go a step further by incorporating human feedback,
as seen in Cardamone et al. [23]. This approach leverages human intuition and subjec-
tive preferences to guide the evolution of game content, ensuring alignment with player
expectations. This human input helps refine the evolutionary process, resulting in tracks
that are not only technically sound but also enjoyable to play.

In the context of racing games, PCG can generate track layouts, vehicles, or environments.
This thesis focuses specifically on racing tracks, which are central to the genre’s identity.

2.3. Literature on Racing Track (Generation

The review of existing literature on racing track generation reveals a diverse array of
techniques and methodologies employed to achieve both realism and playability. Building
on the prior section, this analysis incorporates relevant insights and methodologies to
provide further elaboration on procedural content generation (PCG) within the specific
context of racing games.

Procedural content generation methods have shown immense versatility, with road net-
work generation emerging as a particularly intricate challenge. Drawing from techniques
employed in virtual city creation, spline-based road generation offers a robust approach.
The application of cubic and Bézier splines, as detailed in |20, 22|, allows for the creation
of smooth, continuous road geometries. These splines ensure that generated roads main-
tain a balance between aesthetic quality and navigability. For racing track applications,
spline-based techniques can be augmented with procedural textures and UV mapping,
which are critical for generating realistic and visually coherent road meshes [24].

Beyond direct spline manipulation, other procedural methods leverage fundamental geo-
metric constructs to ensure desirable track properties, such as being a closed loop. An
example of this is the convex hull approach, detailed by Maciel [25]. This technique be-
gins with a set of randomly generated 2D points. The monotone chain algorithm is then
used to compute the convex hull that encloses these points, yielding a foundational, albeit
angular, closed path. To transform this into a functional racetrack, subsequent smoothing
algorithms, such as spline interpolation, are applied to create a continuous and drivable
circuit. The simplicity and reliability of this method are notable, as it provides a de-
terministic way to generate a wide variety of track shapes simply by altering the initial
distribution of points.

The use of Voronoi diagrams as a spatial partitioning mechanism offers another layer of so-
phistication in environment modeling [26]. Voronoi diagrams are fundamental constructs
in computational geometry that partition a plane into regions based on the proximity to
a set of seed points, often referred to as "sites." These regions, known as Voronoi cells, are
convex polygons that collectively form a tessellation of the plane. Each cell corresponds
to a site and contains all points closer to that site than to any other.



Figure 2.5: An example of a Voronoi diagram, where the plane is partitioned into cells

based on proximity to a set of seed points (sites).

While these properties have been extensively applied in procedural city generation to cre-
ate realistic road networks and subdivide urban layouts [27-29|, their direct application to
racing track generation is less common, representing a more novel area of investigation.
A key and highly relevant example is the Camilla procedural-track engine [30], which
specifically uses Voronoi diagrams to generate urban-style racing environments. In this
engine, adjusting the density and distribution of the Voronoi seed points directly yields
tracks with varying complexities and street weave patterns, demonstrating the technique’s
direct potential for the racing genre. This approach highlights how the abstract geomet-
ric properties of Voronoi diagrams—where edges represent points equidistant from two
sites—can be effectively harnessed to create diverse and structured track layouts.

To turn such a conceptual network into a fully functional and visually coherent asset, fur-
ther techniques are required. For instance, the generated Voronoi edges can be converted
into smooth spline paths and then textured using procedural UV-mapping to create real-
istic road meshes [24|. Furthermore, should the network contain intersections, advanced
detection algorithms can be employed to prevent graphical issues like overlapping meshes
and texture flicker at junctions [31]. These supporting methods, often developed in the
context of broader procedural world generation [32|, are crucial for translating the high-
level Voronoi structure into a polished in-game track.

Another noteworthy innovation is the hybridization of procedural methods with back-
tracking algorithms. Freiknecht [24] introduces an intersection modeling technique wherein
splines are combined with a backtracking approach to ensure that intersections occupy
minimal space while retaining navigational coherence. This method emphasizes the trans-
lation of procedural patterns into flat, mesh-based geometries—optimizing performance



without compromising visual fidelity. Such techniques hold significant promise for run-
time applications in racing games, especially when paired with shader-based texturing for
real-time rendering efficiency.

Constraint satisfaction problem (CSP)-based methods offer additional utility in segment-
ing racing tracks into modular components. By defining parameters for curvature, length,
and width, CSP-based approaches facilitate the assembly of tracks that align with prede-
fined constraints, ensuring both structural integrity and gameplay diversity. Wang and
Missura [21] effectively demonstrate the application of CSP in creating dynamic and en-
gaging track layouts by segmenting tracks into fixed-length straight lines, left turns, and
right turns.

The integration of machine learning further expands the horizon of PCG in racing track
design. Generative Adversarial Networks (GANs) have been explored for their ability
to generate racetracks that mimic real-world layouts. Tanzola [33| exemplifies the use
of GANSs to generate 2D racing tracks by training on datasets of existing tracks. While
computationally intensive, this data-driven approach captures nuanced design patterns,
enabling the creation of tracks with high visual and structural fidelity.

Despite the advancements in procedural generation, challenges remain in balancing com-
putational efficiency and quality. Real-time generation, in particular, demands algorithms
that can dynamically create coherent, playable tracks without significant computational
overhead. In conclusion, the literature on racing track generation highlights the conver-
gence of traditional geometric methods, advanced procedural techniques, and emerging
machine learning models. From spline-based designs to GANs, the methodologies empha-
size adaptability, scalability, and creativity. Future research should continue to explore
the integration of procedural techniques with real-time systems, enabling the generation of
immersive, engaging racing environments that align with evolving gameplay expectations.

2.4. Quality Diversity and MAP-Elites

While classical optimization approaches often focus on maximizing a single objective, such
as player enjoyment or lap time consistency, Quality Diversity (QD) algorithms offer an
alternative by seeking a wide range of high-performing solutions across different regions
of the behavior space. This approach aligns with the inherent complexity and variability

found in natural systems, where evolution produces diverse species adapted to distinct
niches [34].

In the context of racing track generation for video games, procedural content generation
(PCG) has often relied on single-objective optimization, such as minimizing track length
variance or ensuring balanced curvature. These methods typically identify a single best
solution based on a fitness function. However, in practice, “best” is context-dependent.
Short, high-intensity circuits may appeal to some players, whereas long, technical tracks
might challenge more experienced racers. A singular track design is insufficient to meet
diverse player preferences and skill levels. QD algorithms address this limitation by rec-
ognizing that many types of “high-quality” solutions can coexist. For example, a short
track with frequent overtaking opportunities can provide high competitiveness, while a



long, scenic circuit with sweeping corners may offer a different but equally valuable play
experience.

QD algorithms systematically explore the behavior space while preserving quality for each
member of the population. Lehman and Stanley pioneered this approach with Novelty
Search, a method that promotes behavioral diversity without a specific goal [35]. Building
on this, they introduced Novelty Search with Local Competition (NS-LC), which employs
a localized fitness pressure to encourage competition among behavioral neighbors [36].
This marked the first true QD algorithm, as the localized fitness pressure facilitated the
discovery of diverse, high-quality solutions across behavioral niches.

Single Objective Multi Objective Diversity Driven Quality Diversity

Figure 2.6: Diversity contrasting traditional optimization (focused on a single peak) with

Quality Diversity (exploring multiple high-performing regions).

The Multi-dimensional Archive of Phenotype Elites (MAP-Elites) [3| introduces an inno-
vative approach to exploring behavior spaces by partitioning them into discrete cells, each
defined by user-specified behavior characterizations. These cells represent distinct niches
within the space, where the goal is to populate each niche with the highest-performing
solution. MAP-Elites iteratively evaluates candidate solutions based on their behavioral
features and performance, ensuring that only the best-performing individual is retained
in each cell. This process not only identifies optimal solutions but also provides a com-
prehensive map of performance across the entire behavior space, enabling insights into
trade-offs and relationships between features and fitness. By systematically illuminat-
ing the behavior space, MAP-Elites transforms traditional optimization into a tool for
discovering diversity and high-quality across multiple dimensions.
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Figure 2.7: Conceptual representation of a multi-dimensional behavior space, illustrating

how MAP-Elites partitions the space into discrete cells to explore diverse solutions.

Variants of MAP-Elites have since addressed challenges such as computational scalabil-
ity and exploration efficiency. For instance, Centroidal Voronoi Tessellation MAP-Elites
(CVT-ME) [37] reduces the number of niches in high-dimensional spaces by partitioning
the feature space into a fixed number of homogeneous regions, enhancing efficiency with-
out compromising diversity. Covariance Matrix Adaptation MAP-Elites (CMA-ME) [38]
combines MAP-Elites with Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
improving exploration capabilities through adaptive sampling. Multi-Emitter MAP-Elites
(ME-MAP-Elites) [39] employs heterogeneous emitters with distinct strategies to improve
search efficiency, while MAP-Elites Low-Spread (ME-LS) [40] focuses on reducing perfor-
mance variability among elites, ensuring more consistent solutions.

Behavior characterization (BC) plays a pivotal role in the success of QD algorithms. BCs
serve as vectors defining behavioral traits of solutions within the search space. Aligning
BCs with the ultimate quality metrics helps simplify exploration by improving the effi-
ciency of MAP-Elites. Multi-BC approaches, which utilize multiple behavioral descriptors
simultaneously, have been proposed to mitigate limitations in single-BC setups and ad-
dress the complexity of diverse domains [41]|. Furthermore, variants such as MAP-Elites +
Passive Genetic Diversity (MEPGD) address the limitations of strict elitism by preserving
multiple individuals per bin, facilitating lineage exploration [34|. Similarly, MAP-Elites
+ Novelty (MENOV) integrates novelty scores into selection, enhancing the exploration
of underrepresented behaviors [34].

Descriptor-Conditioned Gradients (DCG) extend MAP-Elites by integrating gradient-
based search, which enhances the efficiency and reliability of exploration in high-dimensional
behavior spaces. The introduction of a descriptor-conditioned critic in this method ensures
that new solutions are evaluated not only for their fitness but also for their contribution
to the diversity and quality of the archive. This refinement enhances the ability of QD



methods to address deceptive landscapes effectively and populate challenging regions of
the search space [42].

Moreover, Faldor et al. describe how DCG-MAP-Elites incorporates an archive distillation
process to consolidate knowledge into a single descriptor-conditioned policy. This policy
facilitates interpolation across behaviors without requiring the storage of numerous solu-
tions, significantly reducing computational overhead while maintaining versatility. The
approach has demonstrated superior QQD-scores and coverage in domains requiring broad
exploration, further emphasizing its potential for application in complex environments
[42].

In conclusion, QD algorithms, particularly MAP-Elites, with its numerous variants, rep-
resent a powerful tool for PCG. Their ability to explore behavior space extensively while
retaining high-performing solutions aligns with the goals of enhancing player experience
and game replayability. While computational demands and selecting behavioral descrip-
tors pose challenges, these algorithms remain promising for diverse content generation
in racing games. Integrating MAP-Elites into the PCG pipeline can create tracks that
meet high standards of playability and challenge while offering a rich variety of racing
experiences.
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3 ‘ Methodology

3.1. TORCS

This study utilizes The Open Racing Car Simulator (TORCS) [1], an open-source, three-
dimensional racing platform widely used in both entertainment and academic research.
Selected for its modularity, portability, and robust support for Al agent development,
TORCS provides a suitable environment for procedurally generating and evaluating racing
tracks.

Figure 3.1: A gameplay screenshot from The Open Racing Car Simulator (TORCS).

First developed in 1997, TORCS has become a foundational platform for Al research,
notably featured in competitions at the IEEE Conference on Computational Intelligence
and Games. Its architecture allows researchers to develop custom controllers and com-
plex driving agents via a low-level API that grants access to the simulation state. The
platform’s core strengths for this research include its detailed physics engine, support
for custom tracks and vehicles, and a non-graphical mode that significantly accelerates
simulation times for large-scale experiments. TORCS simulates comprehensive vehicle
dynamics—including tire grip, aerodynamics, and suspension—using a discrete-time sim-
ulation with a 0.002s step. This combination of features provides a robust and extensible
platform for the procedural generation and analysis of racing tracks, enabling detailed
investigation into the relationship between track design and emergent driver behavior.



Its extensibility enables the addition of custom tracks and vehicles, and permits core mod-
ifications. Additionally, its non-graphical mode increases simulation speeds significantly.
This characteristic makes it particularly useful for large-scale experiments and iterative
testing. Moreover, TORCS allows for the use of multiple simulated cars, or “robots,” each
of which has the opportunity to gather and process track information. This permits the
calculation of a suitable initial racing line, car setup, and team/pit strategy.

In summary, TORCS provides a suitable framework for this research due to several key
characteristics. Its open-source and extensible architecture was leveraged to integrate
the custom telemetry modules required for our analysis. Moreover, its capacity for non-
graphical execution is well-suited to the large-scale, automated evaluations inherent in
the MAP-Elites algorithm. Collectively, these features create a practical environment for
studying the relationship between procedurally generated track layouts and the emergent
dynamics of the simulator’s Al agents.

Moreover, several forks of TORCS exist. One of them, Speed Dreams, is geared towards
a better human player experience. Speed Dreams is a racing simulation game that, while
sharing its origins with TORCS, has evolved to emphasize a more refined user interface
and experience, providing higher quality graphics and enhanced gameplay. Speed Dreams
is often used for human gameplay, while TORCS is favored for research. Other forks
include pyTORCS, which is a port of TORCS to Python, replacing several modules with
standard open-source software.

3.2. Track Representations

This section details the methods employed to represent racing tracks in this study. In
procedural content generation (PCG) for racing games, the processes of encoding and
decoding are crucial to transform abstract representations into tangible game elements.
Specifically, genotype-to-phenotype mapping refers to the transformation of a compact,
encoded representation (the genotype) into a usable game asset (the phenotype). For rac-
ing track generation within the TORCS simulator, this involves encoding track character-
istics into a set of parameters and subsequently converting these parameters into a track
layout that TORCS can interpret and render. This section delineates the methodologies
used to encode racing tracks using Voronoi diagrams, the mapping of these encoded rep-
resentations into TORCS-compatible formats, and the strategies implemented to ensure
the reliability and diversity of the generated tracks.

The representation in PCG significantly influences the diversity, complexity and playa-
bility of the generated content. This section examines three primary methods: Perlin
noise with polar coordinates, convex hull methods (specifically the Maciel method), and
Voronoi diagrams. The discussion assesses each method’s suitability for generating diverse
and engaging tracks. Smoothing algorithms, such as spline interpolation, and validation
mechanisms are applied to ensure the generated tracks are both aesthetically appealing
and drivable within TORCS.

TORCS represents tracks internally as a circular, doubly linked list of segments. Each
segment includes information about its curvature, width, surface type, and barriers. This



structured representation is essential to achieving the research goals of this thesis, as it
allows for a direct translation of the generated track into the simulation.

3.2.1. Perlin Noise with Polar Coordinates

Initially, Perlin noise with polar coordinates was considered for its capacity to generate
smooth, closed-loop tracks with inherent variability. Its straightforward implementation
made it an attractive starting point. However, experiments revealed that Perlin noise,
while capable of producing aesthetically pleasing tracks, did not provide the desired level
of diversity and control. While increasing the number of noise layers and adjusting pa-
rameters such as frequency and amplitude could create a range of track designs, from flat,
fast circuits to complex and twisty layouts, the method ultimately had limited control
over specific track features and resulted in repetitive designs. For instance, fine-tuning
elements like curve placement or segment length proved difficult, impacting the balance
between playability and track difficulty. This method also required meticulous param-
eter tuning and the layering of multiple noise functions to achieve sufficient variability.
In summary, Perlin noise with polar coordinates, although useful for creating smooth,
continuous, and closed paths, lacked the precise control and diversity required for this
project.

3.2.2. Convex Hull Methods (Maciel Method)

To overcome the limited control and diversity offered by Perlin noise, we adopted a method
based on convex hulls, adapting the approach pioneered by Maciel [25]|. In our implemen-
tation, the genotype is defined by a set of 2D points. From these points, we compute
the convex hull using the efficient monotone chain algorithm. The resulting polygonal
boundary is then smoothed with spline interpolation to form a drivable track. This tech-
nique offers two key advantages for our research: first, its deterministic nature provides
a reliable foundation for generating topologically valid, closed-loop tracks. Second, it
offers an intuitive mechanism for exploring the design space, as altering the distribution
and density of the initial points directly influences the track’s shape and complexity with
minimal parameter tuning.

3.2.3. Voronoi Diagrams

Building on the potential of Voronoi diagrams for procedural generation, as outlined in
Chapter 2, we selected this method as a primary representation for our track genotypes
due to its geometric expressiveness. In our approach, a track’s underlying structure is
derived from the edges of a Voronoi tessellation generated from a set of seed points.

To build a continuous racing track, a random distribution of seed points is used to generate
Voronoi cells. The edges of these cells form a graph network that defines the underlying
track structure. Algorithms then process the graph to extract a continuous path by
tracing the edges of selected cells. To enhance the drivability and visual aesthetics of the
track, smoothing techniques like spline interpolation using Catmull-Rom splines or Bézier
curves are applied. These methods remove sharp corners and ensure smoother transitions



between track sections.

The advantages of Voronoi diagrams in this context are numerous. Their ability to inher-
ently produce closed-loop paths ensures that tracks can be seamlessly generated without
requiring additional closure logic. Furthermore, the flexibility in manipulating seed point
distributions permits the exploration of diverse track geometries, spanning simple layouts
to intricate patterns. The computational efficiency of algorithms for constructing Voronoi
diagrams—such as divide-and-conquer, plane sweep, and higher-dimensional embedding
techniques—has further cemented their importance in computational geometry.

Voronoi diagrams can efficiently tackle complex design and optimization problems, such
as generating diverse, visually appealing, and functional track layouts.

3.2.4. Encoding the Track as a GGenotype

A racing track’s final representation in TORCS requires adherence to a specific XML
schema that defines key elements such as straights, curves, surfaces, and barriers. In
practice, this detailed layout—the phenotype—is what the racing engine parses and ren-
ders during simulation. The engine demands that the track is precisely defined in terms
of its segment lengths, angles, and other physical attributes.

The design process begins with a compact and abstract encoding of the track’s structure,
designated as the genotype. As discussed in the previous section, in our research the geno-
type is constructed using two complementary strategies: one based on Voronoi diagrams
and the other on convex hull methods. These approaches capture the core geometric
and topological features of a track while reducing the dimensionality of the design space,
which simplifies subsequent genetic operations.

The Voronoi-based genotype is derived from a collection of seed points that are randomly
distributed within the target domain. Each seed point, acting as a site, contributes to
a Voronoi cell. A subset of these cells is carefully selected so that their edges form the
continuous path of the track layout. The genotype therefore consists of the coordinates
of the original seed points along with the coordinates of the sites of the selected Voronoi
cells. This selection is critical because the outline of the track is determined by the edges
of these cells.

In the convex hull approach, the genotype comprises simply the coordinates of the original
seed points. The convex hull is computed using a deterministic algorithm—in our imple-
mentation, the monotone chain algorithm—to produce a unique boundary that encloses
the set of points. The resulting trajectory is then refined through smoothing techniques
to enhance drivability. This deterministic mapping from seed points to convex hull elim-
inates randomness in the final layout, providing a reliable basis for generating the racing
track.

Using these compact, low-dimensional genotypes allows for the efficient application of
crossover and mutation operators during the evolutionary search.

Once a promising genotype is evolved through an evolutionary operation, it undergoes
a mapping process, and a solution compatible with TORCS track format is created.



During mapping, the abstract geometric constructs are transformed into a network of track
segments, smoothed using algorithms e.g., spline interpolation to guarantee a drivable
path, and finally formatted into TORCS’s native XML format. The conversion process is
delicate; even minor errors in segment continuity or curvature can result in a track that
fails to close properly or that violates gameplay requirements.

In summary, representing a racing track in TORCS’s XML format is the final goal of a
two-stage process. First, an abstract genotype, encoded through either Voronoi diagrams
or convex hull methods, encapsulates the track’s fundamental structure. Next, a precise
mapping process translates that abstract representation into a fully specified, simulation-
ready phenotype. This separation between genotype and phenotype streamlines both the
design and optimization phases conforming to the technical constraints of TORCS engine.

3.2.5. Variation Operators

Building on the foundations of the genotype discussed in the previous section, this chapter
focuses on the crossover and mutation operators developed during the research. These
genetic operators play a critical role in exploring and exploiting the design space, enabling
the generation of diverse and high-quality racing tracks. This section outlines the chal-
lenges faced during the implementation of these operators, details the specific strategies
adopted for mutation and crossover, and evaluates their impact on the resulting tracks.

Designing effective crossover and mutation operators for racing track generation presents
several significant challenges. A primary concern is maintaining the structural integrity
of the track, ensuring that any offspring remains a well-formed and playable circuit.
Genetic operations must preserve this integrity, avoiding not only discontinuities that
break the closed-loop structure but also other geometric defects like self-intersections or
abrupt transitions that could compromise playability. Another challenge lies in achieving
a balance between exploration and exploitation within the design space. Operators must
facilitate the discovery of novel track configurations while retaining desirable features from
existing designs. This balance ensures that the genetic properties of high-quality tracks
are preserved while allowing for innovation.

Crossover operators combine segments from two parent tracks to create new offspring,
ensuring the resulting tracks are continuous and playable with smooth transitions at seg-
ment junctions. Strategies include merging parent track sections or recombining control
points to maintain coherence, directly influencing track diversity and quality by deter-
mining how genetic material is shared across generations. Mutation operators introduce
controlled variations by adjusting parameters like control point positions or segment cur-
vature. These changes must balance preserving most of the track structure mutating only
for example a single seed point position.

Effective mutation and crossover operators are crucial for avoiding local optima and en-
suring the evolutionary process explores the design space efficiently. Computational effi-
ciency is also vital, as operators must rapidly generate and evaluate tracks to support the
iterative nature of evolutionary algorithms.



Implementation of Mutation Operators Two main mutation strategies are used:
one for Voronoi-based genotypes and another for convex hull-based genotypes. For Voronoi-
based genotypes, the process randomly selects a site from the set of chosen cells that define
the track. The selected site’s x and y coordinates are each altered by a small, randomly
generated displacement, with the magnitude of these changes governed by an intensity
parameter. This adjustment produces minor geometric variations in the track while pre-
serving its continuity. The convex hull-based mutation operates on the points that form
the boundary of the track. In this approach, one selects a random point from the convex
hull representation and applies small, intensity-scaled displacements to its coordinates.
The corresponding point in the complete seed point dataset is then updated to reflect
this change. This method specifically targets the track’s outer limits, inducing localized
geometric variations that can subtly affect the overall track shape without compromising
the closed-loop quality inherent in the convex hull. For both mutation operators, the
intensity hyperparameter can be tuned to balance exploration and preservation. Low-
intensity mutations create slight adjustments that fine-tune a track’s layout, while higher
intensities promote broader diversity. In practice, these mutation operators complement
crossover methods by introducing localized changes after genetic information has been
recombined. They help ensure that the evolutionary process explores the design space
preserving the validity of each solution, for example without allowing the number of se-
lected cells to grow uncontrollably. This controlled variability is crucial for generating
tracks that are both structurally coherent and visually representative of successful design
patterns inherited from parent genotypes. Overall, these mutation strategies are simple
in design yet effective; they introduce targeted modifications that maintain the essential
geometric and topological characteristics of the tracks.

Implementation of Crossover Operators The following section presents a detailed
description of the crossover operators used in this research. The two distinct genotypic rep-
resentations (Voronoi diagrams and convex hulls) required specialized crossover strategies
tailored to their unique data structures. This section elaborates on the methods applied,
the challenges encountered, and the rationale for the chosen implementations.

Crossover Strategy for Voronoi-Based Genotypes Designing an effective crossover
operator for Voronoi-based genotypes is a non-trivial task. The operator must intelligently
combine the geometric and topological features of two parent tracks to produce viable,
coherent offspring. A successful crossover is fundamental to the evolutionary algorithm’s
search capability, as it must balance the exploration of novel track configurations with the
exploitation of successful traits inherited from the parents. A poorly designed operator
might consistently produce invalid tracks or fail to create meaningful new structures,
stalling the evolutionary process. To address this challenge, several distinct crossover
strategies were developed and evaluated, each with a different approach to merging the
parental genetic material.

During development, the following strategies were implemented and considered:

1. Random-Line Partitioning Method: The implementation begins by calculating
the geometric center of the selected Voronoi seed points from both parent tracks.



This center serves as a reference for generating a random dividing line. The line’s
slope is determined by a random angle selected from a uniform distribution, while
its intercept is computed to ensure the line passes through the center. Once the
dividing line is established, each parent’s Voronoi cells are partitioned into two
subsets depending on their relative position to the line. Two possible divisions are
evaluated: one that assigns cells on one side of the line to the offspring and another
that reverses this assignment. The division that maximizes the balance between the
number of cells from the two parents is selected. The offspring’s final genotype is
the union of the selected cells, ensuring adequate representation from both parents.

2. Relative Reconstruction Method: This approach attempted to overlay one
parent’s selected Voronoi cells onto the other by aligning their geometric centers.
Cells from one parent were spatially shifted relative to the center of the other parent.
However, this method introduced instability because shifting cells caused boundary
distortions, often compromising the offspring’s structural integrity.

3. Midpoint Method: This method calculated the midpoints between corresponding
seed points from two parents and used these midpoints as the sites for the offspring.
While geometrically sound, this approach was ultimately discarded after initial tests.
It consistently produced offspring that deviated significantly from both parents,
resulting in overly simplistic or unrecognizable track layouts that lacked the desired
complexity.

4. Connection-Based Method: This heuristic-based method was implemented to
repair cases where Voronoi-based crossovers produced disconnected track segments.
A breadth-first search (BFS) algorithm was applied to identify and add bridging
cells, ensuring connectivity. Although this method improved continuity, it was more
effective as a supplement rather than as a standalone approach.

A critical component of all strategies is a regularization stage to address potential “explo-
sions” in the number of cells selected. Offspring with too many Voronoi cells can become
computationally infeasible and geometrically unmanageable. To prevent this, a target
cell count, typically the average number of cells from the two parents, is maintained.
Cells farthest from the offspring’s center are iteratively removed until the target count is
achieved. This trade-off preserves the structural core of the offspring while eliminating
redundant or excessive elements.



Figure 3.2: Illustration of the Random-Line Partitioning Method for Voronoi-based
crossover. Parent tracks are divided by a random line, merging selected cells to form

the offspring. The connection-based method supplements cases with distant cells.

Figure 3.3: Illustration of the Relative Reconstruction Method for Voronoi-based
crossover. The Voronoi diagrams of two parent tracks are combined to produce the off-
spring shown on the right. Cells from one parent are spatially shifted relative to the center
of the other, along with their neighboring sites, to preserve the overall cell shapes and

structure during merging.



Figure 3.4: Illustration of the Midpoint Method for Voronoi-based crossover. The Voronoi
diagrams of two parent tracks are combined by calculating midpoints between correspond-
ing seed points. It often results in offspring with overly simplistic or unrecognizable track

layouts, limiting its effectiveness.

From a purely visual comparison, the Random-Line Partitioning Method—augmented
by regularization and supplemented by the BFS heuristic when needed—seems to offer
the most effective balance between parental trait integration and geometric coherence.
However, this is purely visual assessment not supported by quantitative analysis. In the
experimental phase of this research, we conducted comparison runs between the Random-
Line Partitioning Method and the Conver Hull Crossover Method to evaluate their per-
formance in terms of track diversity, playability, and computational efficiency. The results
of these experiments provide insights into the effectiveness of each crossover strategy in
generating high-quality racing tracks.

Crossover Strategy for Convex-Hull-Based Genotypes The crossover operator
for convex-hull-based genotypes partitions the point sets of two parents using a dividing
line. This line is defined by a randomly generated slope and is calculated to pass through
the geometric center of the combined parent points.

Each parent’s point set is then split based on its position relative to this line. One subset of
points is taken from the first parent (e.g., all points below the line), and a complementary
subset is taken from the second parent (e.g., all points above the line). These two subsets
are merged to form the initial offspring genotype.

A critical post-processing step enforces a fixed size on the offspring’s point set, ensuring
it matches the parents’ count. If the merged set is too large, it is randomly shuffled
and truncated. If it is too small, points are randomly sampled with replacement from
the merged set until the target size is reached. This explicit size control, rather than an
inherent property of the method, prevents uncontrolled growth in the number of points.
The final genotype is later smoothed with spline interpolation to create a drivable track.



Figure 3.5: ITllustration of the Convex Hull Crossover Method. The left shows the convex
hulls of two parent tracks, divided by a randomly oriented line passing through their
combined center. The right displays the offspring track layout formed by merging subsets

of points from both parents.

Conclusion In the context of the entire framework, the crossover operators are designed
to balance diversity and feasibility for both Voronoi and convex hull genotypes. Offspring
must retain sufficient resemblance to their parents while introducing novel features that
expand the design space. Throughout the development process, multiple variants of these
crossover operators were implemented and considered, including those detailed in the
preceding subsections.

A key observation during development was that each approach benefited from visual in-
spection to confirm the offspring’s structural validity and visual appeal. Tracks that
deviated too far from parental features or exhibited disconnected segments were flagged
and revised, leading to iterative refinements in the operators’ design. These qualitative
evaluations were critical in ensuring the developed operators could reliably generate co-
herent and varied track structures. The subsequent experimental analysis (as detailed
in Chapter 4) quantifies the performance of these different crossover strategies, including
the Random-Line Partitioning Method for Voronoi cells and the ordinary least squares
regression-based approach for convex hulls, to understand their respective contributions
to the evolutionary search.

3.3. MAP-Elites Implementation with Pyribs

This section details the practical implementation of the Multi-dimensional Archive of
Phenotype Elites (MAP-Elites) algorithm, which serves as the core of our evolutionary
search. We utilized the Pyribs library [43|, a modern Python framework designed for
Quality Diversity (QD) optimization. Pyribs was chosen for its modular architecture,
flexibility, and robust implementation of state-of-the-art QD algorithms, making it an
ideal platform for our research.



3.3.1. The Pyribs Conceptual Framework

Pyribs implements a modular conceptual framework called RIBS, which unifies methods
like MAP-Elites and its many variations. This framework is built on three main compo-
nents that work in concert:

e The Archive: This is the central data structure that stores the collection of elite
solutions. It is structured as a grid (or "map") partitioned by the behavioral dimen-
sions of the problem. When a new solution is submitted, the Archive determines
its corresponding niche and adds it only if the niche is empty or if the new solution
has a higher fitness score than the existing elite.

e The Emitters: Emitters are responsible for generating new candidate solutions
to be evaluated. Their complexity can range from a simple emitter that randomly
selects an elite from the archive and applies mutation, to more advanced strategies
like the CMA-ME emitter, which uses the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) to intelligently guide the search.

e The Scheduler: The Scheduler is the high-level orchestrator that coordinates the
interaction between the Archive and the Emitters. It follows an "ask-tell" interface:
it "asks" the emitters to generate a new batch of solutions. After these solutions
have been evaluated externally by the user’s own system, the Scheduler is "told"
the results, which it then passes to the emitters and the archive to update their
respective states.

This workflow is inherently modular. A key design principle of Pyribs is that it deliberately
does not handle solution evaluation, leaving this complex, domain-specific task entirely to
the user. Our pipeline leverages this by integrating Pyribs with our external simulation
and analysis tools.

3.3.2. Implementation within the Pyribs Framework

Our implementation translates the abstract components of Pyribs into a concrete system
tailored for procedural track generation.

Archive Configuration Given that the potential range of track characteristics was
not known in advance, we employed Pyribs’ SlidingBoundariesArchive. Unlike a static
grid, this advanced archive type dynamically adjusts its boundaries based on the solutions
it observes, which is more suitable for exploratory search. The archive was configured to
remap its boundaries periodically and to maintain a buffer of the most recent solutions,
allowing it to adapt to the evolving population.

Custom Emitter for External Operators To integrate our bespoke genetic opera-
tors, we implemented a CustomEmitter that inherits from Pyribs’ ‘EmitterBase‘. This
class is the bridge between the Python-based evolutionary loop and our Node.js-based
geometry engine. It operates in two phases:

1. Imitialization: To bootstrap the search, the emitter first generates an initial popu-



lation by making API calls to our external generation server, creating entirely new,
random track genotypes.

2. Evolution: After initialization, the emitter drives the search by selecting parents
from the archive and applying either crossover or mutation. These genetic operations
are not performed in Python; instead, the emitter makes API calls to our backend
server, which executes the complex geometric manipulations.

This design effectively decouples the high-level evolutionary orchestration from the low-
level geometric logic.

Defining the Search Problem for Pyribs The abstract problem of track design is
made concrete for Pyribs through the following representations:

e Genotype: Each solution is represented internally as a one-dimensional NumPy
array—a flattened, fixed-length vector encoding the track’s seed points. Helper
functions handle the conversion between this array format and the structured JSON
required by our external services.

¢ Behavioral Vector and Fitness Score: The evaluation of each track is handled
by the broader pipeline infrastructure. For each solution, this pipeline returns the
two key pieces of information required by the Pyribs scheduler: a behavioral vec-
tor (the solution’s coordinates in the diversity map) and a single objective score
(its fitness).

When the ‘tell' method of the scheduler is called with these two pieces of data, it updates
the archive, completing the evolutionary cycle. This allows Pyribs to orchestrate the
search based on the quality and diversity information provided by our external evaluation
pipeline.

3.4. Implementation Details and Pipeline Overview

This chapter presents the technical framework that integrates the generation, simulation,
and evaluation of procedural racing tracks. The pipeline orchestrates several components:
Python supports the MAP-Elites algorithm and data analysis, Node.js drives track gen-
eration and real-time visualization using Processing.js, and Docker manages TORCS sim-
ulations. A custom HTTP API, implemented in Node.js with Express, connects track
generation, simulation, and telemetry data.

3.4.1. Generation and track visualization

A crucial requirement for this research was the ability to visually inspect and debug the
geometric outputs of our procedural algorithms. To address this need, we developed a
web-based visualization tool using p5.js [44], a modern JavaScript library for creative
coding. Its capability for direct, canvas-based rendering and interaction made it ideal
for visualizing the construction of tracks and for the iterative debugging of our genetic
operators.



The selection of a JavaScript library for the frontend directly informed our decision to use
Node.js for the backend. This choice created a cohesive, full-stack JavaScript environment,
which streamlined development and ensured seamless communication between the client-
side visualizer and the server-side generation logic. This integrated setup proved highly
practical, providing the immediate visual feedback necessary to validate and refine our
geometric algorithms efficiently.



@ Track Gallery Visualization x  + - O hes

A0
AR

s
o
@

& (O () httpsy//pegtrack.netlify.app/track_visualizer

Track visualizer

e
.
.
- -
0 '
.
R .
.
. .
.
.
.
.
.
- .
.
.
. .
. - . .
ol
. - .
. .
. . "
. :
. .
. .
- . "
Seed:
[ Hefault random ]

Number of Cell Tracks:

10

Track Generator Mode:

Voronoi v

Generate Track

Genotype in JSON

format 4 Load JSON

Save Track to Clipboard

Voronoi/Convex Hull Points Edges

Spline
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Figure 3.8: The p5.js-based interface demonstrating the Relative Reconstruction crossover
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viable offspring (right) that inherits traits from both.

As shown in the website’s screenshots, the p5.js-powered interface enabled real-time vi-
sualization of the generated tracks and the application of genetic operators. All track
generation research phases were visualized and analyzed, from Voronoi diagrams to con-
vex hulls, points, edges, and splines. Users can input seeds, select generator modes, and
adjust parameters in real time. The visual interface also supports loading, saving, and
comparing JSON representations of tracks. These JSON representations were a useful aid,
created to facilitate a manual evaluation of the solutions found during the MAP-Elites
iterations, allowing for quick visualization and cross-checking of the results.

Following the interactive phase, the Node.js [45] backend converts abstract genotypes, rep-
resented as Voronoi or convex hull parameters, into functional tracks compatible with the
TORCS simulator. It uses JavaScript libraries to process the track geometry and incorpo-
rates error handling mechanisms that validate and correct formatting issues, preventing
invalid tracks from reaching the simulation stage.



Moving to the rest of the pipeline and its integration, the Node.js environment hosts a
custom HTTP API built with the Express framework. This API manages communica-
tion between the main Python environment and the backend services. The evolutionary
algorithm itself was managed within a Jupyter Notebook [46]. A Jupyter Notebook is a
web-based interactive computing environment that allows for the combination of live code,
visualizations, and narrative text in a single document. This makes it an ideal tool for
exploratory research, allowing for the direct execution of the MAP-Elites loop, real-time
monitoring of the archive’s progress, and immediate analysis of the results. The Notebook
communicates with the API to coordinate the entire pipeline, from track generation to
the parallelized simulation in Docker containers.

3.4.2. Containerization

A significant technical challenge in this research was managing the TORCS simulation
environment. TORCS has a complex set of legacy dependencies, making manual instal-
lation prone to inconsistencies that could corrupt experimental results. To solve this,
we employed Docker [47] for containerization, creating a portable, self-contained, and re-
producible simulation environment. Our ‘Dockerfile‘ precisely defines this environment,
starting from an Ubuntu base and installing all dependencies, including the X Virtual
Framebuffer (Xvib) for headless operation and our custom telemetry modules [48].

Instead of maintaining a persistent pool of containers, our Node.js server orchestrates this
architecture using a single-use container strategy. A fresh container is instantiated for
each track evaluation and is destroyed immediately afterward. This approach provides
resilience; should a simulation freeze or crash, the faulty container can be safely timed
out and shut down without affecting the main server or other concurrent evaluations.

3.4.3. Telemetry and Evaluation

The TORCS simulation, containerized with Docker, collects data using custom telemetry
tools. These tools are built upon modifications to the TORCS C++ engine by Sirianni
[48] that capture raw gameplay metrics during each simulation. The analysis pipeline
involves two main stages: first, a Python script within the container orchestrates the
simulation runs and aggregates the raw telemetry into a structured JSON output. This
output is then captured and parsed by the main Node.js backend, which performs the
final feature assembly. Significant custom logic was implemented at this stage to process
and format the collected data, ensuring the final telemetry outputs are fully compatible
with the Python-based MAP-Elites implementation.

Data collected during simulations allows the derivation of a set of descriptive features.
These features characterize both the geometric properties of the generated tracks and
the emergent gameplay dynamics they facilitate. They serve as the foundation for both
the behavioral characterization dimensions within MAP-Elites and the components of the
fitness function.



Geometric Features

These features describe the intrinsic structural properties of the generated racing tracks.

e Track Length (length): This metric quantifies the total length of the track in
meters, calculated as the sum of all individual segment lengths. It provides a fun-
damental measure of track scale.

e Average Radius Mean and Variance (avg radius mean, avg radius wvar):
avg_radius _mean represents the average radius of curvature across all curved seg-
ments of the track. avg radius_var quantifies the spread in these radii, indicating
the diversity of curve tightness.

e Bend Counts (left bends, right bends): These values represent the total num-
ber of left-turning and right-turning segments on the track. These metrics are nor-
malized by dividing by the total track length, providing a ratio that characterizes
the track’s curvature density independently of its scale.

e Straight Sections (straight sections): This value indicates the total count of
straight segments on the track. Similarly to bend counts, this metric is normalized
by track length to obtain the proportion of non-curving sections relative to the
overall track size, making it a more effective descriptive feature that is independent
of track scale.

Emergent Gameplay Features

These features are derived from the behavior of Al agents during simulated races, re-
flecting the dynamic qualities of the track. Several of these metrics leverage **Shannon
entropy™* to quantify the variability and complexity of different aspects of gameplay. To
calculate the entropy for a given continuous feature (e.g., vehicle speed), the set of all
recorded values is first discretized into a histogram, using a fixed number of 30 bins in
our implementation. The probability p; for each bin 7 is then calculated as the fraction
of values that fall into that bin. The entropy H is given by the formula:

H=-— Zpi log, (p:) (3.1)

where N is the total number of bins and p; is the probability of a value falling into the
i-th bin. A higher entropy value indicates that the measured quantity is more evenly
distributed across its range, signifying greater complexity or unpredictability.

e Speed Entropy (speed entropy): This is the Shannon entropy of the distribu-
tion of vehicle speeds recorded across all track segments. A higher value suggests a
wider range of speeds experienced, indicating a track that demands varied driving
dynamics.

e Acceleration Entropy (acceleration entropy): This metric quantifies the Shan-
non entropy of the distribution of vehicle accelerations throughout the race. It
measures the variability in acceleration demands on the track.



e Braking Entropy (braking entropy): This is the Shannon entropy of the dis-
tribution of vehicle braking forces. It quantifies the variability in braking intensity
required by the track layout.

e Curvature Entropy (curvature entropy): This metric represents the Shannon
entropy of the distribution of track segment curvatures (inverse of radius). A higher
value indicates a greater diversity of turns and straights, suggesting a geometrically
varied track.

e Total Overtakes (total overtakes): This value indicates the cumulative number
of overtaking events recorded during the simulated race. This raw count provides
an initial measure of competitive dynamics.

e Gap Mean and Variance (gaps mean, gaps_var): These metrics quantify the
time differences (gaps) between successive cars at the race’s conclusion. gaps mean
is the average time gap, and gaps_wvar is its variance. Smaller values indicate closer,
more competitive races. The system considers gaps up to a maximum realistic time
(e.g., 120 seconds).

e Positions Mean and Variance (positions mean, positions wvar): These
statistics describe the distribution of changes in driver positions throughout a race.
positions_mean indicates the average shift in position, while positions wvar quanti-
fies the spread of these changes. They reflect the fluidity of competitive positions.

Track Closure Features

These features assess the topological integrity of the generated tracks.

e Positional Discrepancies (deltaX, deltaY, deltaAngleDegrees): These met-
rics quantify the geometric error in track closure. deltaX and deltaY represent
the positional discrepancy (in meters) between the track’s start and end points in
global Cartesian coordinates. deltaAngleDegrees measures the angular difference (in
degrees) between the track’s initial and final heading. Significant values indicate a
track that does not perfectly close, potentially impacting simulation stability and
gameplay.

The data for these features is collected and processed into JSON format. This format
transmits fitness scores and auxiliary evaluation data to the Python backend. This in-
formation is critical for updating the MAP-Elites archive and guiding the evolutionary
search toward generating tracks that exhibit high quality and diversity.

3.4.4. Experiment Management and Checkpointing

The iterative nature of evolutionary algorithms, particularly those involving extensive
simulations like MAP-Elites, often demands significant computational resources and pro-
longed execution times. To address the practical challenges associated with long-running
experiments, such as unexpected system interruptions, resource limitations, or the need for
intermediate analysis and debugging, a robust checkpointing mechanism was integrated
into the pipeline.



This mechanism ensures the persistence of the algorithm’s state at regular intervals, allow-
ing experiments to be safely paused and subsequently resumed from their last saved point.
The entire state of the MAP-Elites scheduler and its associated archive—encompassing
the current population of elites, their behavioral characteristics, and fitness scores—is
periodically serialized. This serialization is achieved using Python’s pickle module, which
efficiently converts complex Python objects into a byte stream that can be written to
disk. Checkpoints are saved every 50 iterations, creating timestamped backup files (e.g.,
checkpoint_ 0050.pkl, checkpoint 0100.pkl).

Upon initiation, the system first checks for the presence of existing checkpoint files. If
found, the most recent checkpoint is loaded, restoring the scheduler and archive to their
precise state at the time of the last save. This resume capability prevents the loss of
valuable computational progress in the event of system failures or interruptions, while
enabling experiments to be segmented across multiple sessions or computational environ-
ments. Additionally, checkpoints facilitate iterative refinement by allowing researchers to
inspect the evolving archive at specific states, analyze emergent track designs, and make
informed decisions regarding hyperparameter adjustments without restarting the entire
evolutionary process.

This proactive approach to experiment management significantly enhances the reliability,
efficiency, and flexibility of the procedural content generation pipeline, transforming what
would otherwise be a brittle, high-risk computational endeavor into a manageable and
robust research process.

3.4.5. System Architecture and Workflow

The preceding sections have detailed the individual components of our methodology, from
the track representations and genetic operators to the containerized simulation environ-
ment. This final section provides a holistic overview of how these components are inte-
grated into the complete procedural content generation pipeline, as illustrated in Figure
3.9.

The entire process is orchestrated from an interactive Jupyter Notebook environment,
which hosts the Pyribs-driven MAP-Elites engine. The notebook serves as the high-level
control interface for the entire experiment, initiating the evolutionary loop, monitoring
its progress, and providing tools for the final analysis of the generated archive.

A complete evaluation cycle, which forms the core feedback loop of the system, proceeds
as follows:

1. The Pyribs Engine (‘notebook.ipynb‘) ‘asks‘ for a new batch of solutions and sends
the corresponding genotypes via a POST request to the API.

2. The Express API (‘mapElitesAPLjs‘) receives the request and forwards it to the
Track Generator module.

3. The generator creates the track phenotype and triggers the evaluation, which starts
a fresh, containerized TORCS simulation.

4. The custom Telemetry Module within TORCS captures gameplay data, which is



processed and saved as structured logs.

5. Finally, the telemetry data, containing the fitness score and behavioral characteris-
tics, is returned to the Pyribs engine, which ‘tells‘ the information to the archive,
thus completing the loop.

This integrated pipeline provides a robust and scalable framework for our research, en-
abling the systematic, automated exploration of the racing track design space.
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Figure 3.9: The pipeline flows from the Pyribs-driven evolutionary engine to track gener-

ation and simulation, with feedback loops completing the evolutionary cycle.
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4: Results and Analysis

This chapter details the experimental work conducted to evaluate the proposed track
generation methods. The research was structured in two main phases. The first is a
preliminary analysis designed to systematically identify and select robust, meaningful
features for guiding the evolutionary search. This foundational work ensures the reliability
and interpretability of the final experiments. The second phase involves running the main
MAP-Elites experiments using the features selected and validated in the first phase.

4.1. Preliminary Analysis

The objectives of this phase were twofold: firstly, to systematically quantify the stability
and reliability (noisiness) of emergent features extracted from TORCS simulation outputs,
and secondly, to evaluate how the track generation process and its geometric representa-
tions impact feature stability and consistency, which is crucial for meaningful evolutionary
comparisons and selections.

These analyses were foundational in ensuring the effectiveness of the descriptors subse-
quently employed to guide the evolutionary illumination process. Reliable, stable metrics
are critical for effectively guiding the evolutionary exploration and accurately character-
izing track behavior.

Results were systematically evaluated for both track representations.

4.1.1. Emergent Features Noisiness Analysis

Emergent features extracted from TORCS simulations—such as lap times, overtaking
occurrences, and driving patterns—exhibit inherent variability even under conditions of
minimal or visually negligible changes in track layouts. While the underlying TORCS
physics engine operates deterministically, the complex, adaptive behaviors of Al agents
introduce practical non-determinism into the emergent gameplay metrics. Topological
track features, derived directly from the track’s geometry, remain constant for a given
map. However, emergent features, which result from the interaction of agents with the
track, can vary across different simulation runs.

This variability is a significant challenge for search-based algorithms like MAP-Elites. If
a feature fluctuates wildly on the same track, it cannot be a reliable indicator of quality.
The algorithm would optimize random noise rather than meaningful design, undermining
the search process. Therefore, quantifying feature reliability is essential.



To quantify the inherent variability (or noisiness) of emergent features, we performed
controlled experiments involving multiple repeated simulations for each track represen-
tation. We designed a systematic approach to assess the stability of emergent features
across multiple simulation runs.

Our methodology began by generating a set of 100 representative track seeds for each
encoding method (Voronoi and Convex Hull), providing a comprehensive basis for com-
parative analysis between the two track representations.

Initially, we attempted to modify the starting positions of vehicles on otherwise identi-
cal tracks. However, this strategy proved problematic, as even small changes in initial
positioning drastically altered race dynamics—affecting collision probabilities and over-
taking opportunities—resulting in excessively high variability that obscured meaningful
measurements.

Instead, we adopted a more controlled approach by leveraging the mutation operator de-
scribed earlier to create subtly different track variants. These minimally-mutated tracks
were visually indistinguishable to human observers yet contained enough variation to
mimic realistic evolutionary perturbations. For each of the 100 original tracks, we gen-
erated mutated variants and conducted simulations to quantify the stability of emergent
features under these controlled conditions.

This approach was based on the principle that slightly different tracks should yield sim-
ilar emergent features, thus confirming the robustness of the descriptors against minor
geometric perturbations.

The analysis focused on several key emergent features, including lap times, overtaking
counts, speed and acceleration entropies, and positional discrepancies (deltaX, deltaY,
deltaAngleDegrees). These features were selected for their relevance to both track geom-
etry and gameplay dynamics.

We employed statistical measures such as Coefficient of Variation (CV) and Signal-to-
Noise Ratio (SNR) to assess feature reliability. For a given feature with a mean p and
standard deviation o across repeated simulations, these metrics are defined as:

CV = (4.1)

e
,u

SNR = £ (4.2)
g

A low CV and a high SNR indicate a more stable and reliable feature, making it a suitable
descriptor for our evolutionary algorithm. This rigorous process confirmed the importance
of ensuring that our chosen descriptors represent stable track characteristics rather than
simulation artifacts or noise.

The noisiness analysis revealed several critical insights into the stability of emergent fea-
tures across different track representations.

A particularly significant finding involved the total overtakes metric. While this metric
has intuitive appeal as a measure of competitive dynamics, our analysis revealed it was



highly sensitive to minor positional discrepancies at track start and end points (deltaX,
deltaY"). These positioning errors could artificially inflate overtaking counts when vehicles
stalled or slowed significantly at race onset due to imperfect track closure.

To address this limitation, we developed a normalization strategy that divides total overtakes
by the positional mismatch (delta error). This normalized metric (total overtakes / delta)
proved more reliable for capturing genuine competitive dynamics. It effectively empha-
sized overtakes occurring under stable racing conditions while penalizing scenarios where
high overtake counts resulted from positioning artifacts rather than track design quality.

To summarize, the noisiness analysis was conducted in two main phases:

Convex Hull Technique. This encoding demonstrated notably high stability for cer-
tain geometric metrics, particularly length (CV = 0.045, SNR = 22.40), avg_radius_mean
(CV = 0.081, SNR = 12.38), and avg_radius_var (CV = 0.093, SNR = 10.71). Such high
signal-to-noise ratios indicate minimal variability, confirming their suitability as stable de-
scriptors. Conversely, metrics such as positional mismatches and traffic-related features
displayed substantial instability. The most problematic metrics were those related to
track closure error and race gaps, including deltaY (CV = 11.73), deltaAngleDegrees (CV
= 10.06), and gaps_var (CV = 9.31). This instability makes them poor candidates for
primary behavioral descriptors without normalization. The robustness of these metrics
for the Convex Hull technique is visually summarized in Figure 4.1.
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Figure 4.1: Comparison of Metric Robustness for Convex Hull tracks, showing Coefficient

of Variation (CV) for various emergent features. Lower CV indicates higher robustness.

Voronoi Technique. Overall, the Voronoi technique produced tracks with higher fea-
ture variability compared to the Convex Hull method. However, several key features
demonstrated acceptable stability, confirming their viability as behavioral descriptors.
The most reliable were avg_ radius _mean (CV = 0.176, SNR = 5.68) and curvature _entropy
(CV = 0.198, SNR = 5.05). In contrast, many metrics, particularly those related to po-
sitional discrepancies, were highly unstable. These included deltaAngleDegrees (CV =
26.12) and most notably deltaY (CV = 37.28), highlighting their extreme sensitivity to
minor geometric perturbations inherent in the Voronoi generation process. The results
for the Voronoi technique are presented in Figure 4.2.
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The outcome of this analysis informed the selection of robust behavioral descriptors and
the refinement of the fitness function by identifying and mitigating unreliable metrics,
thereby enhancing the stability of the evolutionary search.

These critical insights from the noisiness analysis directly informed two subsequent method-
ological decisions:

e Behavioral Descriptor Selection: Features demonstrating high stability and
low redundancy (as confirmed by subsequent correlation analysis) were prioritized
as robust behavioral descriptors for the MAP-Elites algorithm. Conversely, highly
unstable or redundant metrics were either excluded or refined (as in the case of
normalized overtakes) to ensure that the evolutionary search was guided by reliable
characteristics.



¢ Fitness Function Refinement: The understanding of feature reliability led to the
careful construction of the fitness function. Metrics identified as noisy or susceptible
to artifacts were either normalized or weighted appropriately. This ensured that the
fitness function accurately reflected genuine track quality, thereby enhancing the
stability and effectiveness of the evolutionary search process.

Having established a set of reliable features through the noisiness analysis and developed
mitigation strategies for unstable metrics, the next logical step was to investigate the
relationships among these validated features. While a feature may be reliable, it might
also be highly correlated with another, making it redundant. The subsequent correlation
analysis aims to prune this set of reliable features further by identifying and removing
such redundancies. This ensures the final set of descriptors for MAP-Elites is not only
stable but also efficient.

4.1.2. Correlation and Clustering Analysis of Metrics

Informed by the noisiness analysis, the second phase of the preliminary study involved
in-depth correlation and hierarchical clustering analyses of the averaged metrics across
all repeated simulations. Pearson correlation coefficients were calculated for all pairs of
metrics for both the Convex Hull and Voronoi generation techniques, as visualized in
Figures 4.3 and 4.4.
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Figure 4.3: Correlation matrix for Convex Hull features.
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Figure 4.4: Correlation matrix for Voronoi features.

A direct comparison of the two correlation matrices reveals several key structural patterns
and redundancies in the feature space. For both generation techniques, a tight “driving
dynamics” cluster is immediately apparent, with speed_entropy, acceleration_entropy,
and braking_entropy exhibiting very high positive correlations (consistently r > 0.84).
This indicates that these three metrics largely capture the same underlying concept of
driving complexity. Similarly, gaps_mean and gaps_var are strongly correlated (r =~ 0.94
for Convex Hull, r =~ 0.86 for Voronoi), suggesting they are functionally redundant.

Critically, the matrices provide quantitative evidence for the issues identified in the nois-
iness analysis. For Voronoi tracks, there is a notable correlation between track closure
error (deltaX) and total_overtakes (r = 0.62). This statistically supports the hypoth-
esis that poorly closing tracks can artificially inflate overtaking counts due to simulation
artifacts. For Convex Hull tracks, a similar, though weaker, relationship exists (r = 0.45).
These findings underscore the necessity of using a normalized overtaking score to ensure



a reliable fitness metric.

Further analysis using hierarchical dendrograms (4.5, 4.6) confirms these groupings. Based
on this analysis, several conclusions were drawn to guide the selection of behavioral de-
scriptors:

1. Driving Dynamics Cluster. The strong correlations between the three entropy-
based driving metrics (r > 0.84) confirm their redundancy. Selecting a single rep-
resentative, such as speed  entropy, is sufficient to capture the complexity of vehicle
dynamics without cluttering the behavioral space.

2. Redundancy in Gameplay Metrics. The extremely high correlation between
gaps_mean and gaps_var (r > 0.85) makes them interchangeable. More impor-
tantly, the observed link between deltaX and total_overtakes confirms that a
naive overtaking metric is confounded by simulation errors. This reinforces the
decision to engineer a normalized metric (overtakes/d) to disentangle genuine com-
petitive dynamics from artifacts of poor track closure.
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relationships and redundancies among metrics.
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Figure 4.6: Hierarchical clustering dendrogram for Voronoi track features, showing distinct

and pronounced clusters.

To conclude these preliminary investigations, the correlation and clustering analyses con-
firmed the stability of key emergent features while also revealing significant redundancies
and confounding factors. This understanding guided the selection of a minimal yet effec-
tive set of descriptors for subsequent MAP-Elites experiments.

4.1.3. Dimensionality reduction experiments

After assessing feature stability, this study extracts higher-level behavioral descriptors
using dimensionality reduction. This approach utilizes raw track spline data as input
for embedding and diverges from methods that rely on track images. Each generated
track undergoes sampling to obtain a fixed number of (x,y) coordinate points along its
spline. This process forms a high-dimensional vector, which serves as the input for di-
mensionality reduction algorithms. Specifically, the Uniform Manifold Approximation
and Projection (UMAP) and t-distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithms process these high-dimensional spline vectors. These techniques project complex,
high-dimensional data into a lower-dimensional space, typically two dimensions, while pre-
serving the underlying structure and local neighborhood relationships of the data points.

Using both algorithms served as a cross-validation method for the resulting low-dimensional
space. The algorithms differ in their mathematical objectives and are therefore suited for
revealing different aspects of the data’s structure. Both algorithms are applied to the
same preprocessed spline data. This comparative evaluation allows us to select the most
suitable technique for our goal: creating a continuous and interpretable behavioral space
for the MAP-Elites algorithm. The ideal algorithm will not only group similar tracks but
also organize these groups in a globally meaningful way.

A critical preprocessing step for these spline vectors involved making them invariant to



irrelevant transformations:

e Centering: Each track’s coordinate set is centered around its mean. This removes
translational information, ensuring that two identical tracks positioned differently
on the canvas are treated as the same shape.

e PCA Alignment (Rotation Invariant): To make the embeddings invariant to
rotation, each centered track (represented as a set of points) is aligned using Princi-
pal Component Analysis (PCA) via Singular Value Decomposition (SVD). This pro-
cess finds the principal axis of the track—the direction of maximum variance—and
rotates the track so that this axis aligns with a fixed reference direction (e.g., the
positive x-axis). To ensure a consistent orientation and avoid 180-degree flips, the
sign of the second principal component is checked and, if necessary, the track is
reflected. This alignment ensures that tracks with identical shapes but different
rotations are mapped to similar points in the embedding space.

e No Scaling: Unlike centering and alignment, scaling was intentionally omitted.
Scaling would normalize track sizes, potentially discarding meaningful information
about a track’s intrinsic dimensions, such as its overall length or typical curvature
radii, which are crucial for distinguishing different racing experiences.

This preprocessing significantly enhances the stability and interpretability of the embed-
dings by ensuring that the dimensionality reduction process captures intrinsic geometric
characteristics rather than artifacts of positioning or orientation.

The effectiveness of these preprocessing steps is demonstrated through comparative anal-
ysis of embeddings generated before and after applying centering and PCA alignment.
Figure 4.7 shows the t-SNE embedding of raw, unprocessed spline vectors. In this visual-
ization, tracks that are geometrically identical but differ only in translation or rotation are
scattered across distant regions of the embedding space. This separation occurs because
the dimensionality reduction algorithm treats positional and orientational differences as
meaningful geometric variations, obscuring the true structural similarities between tracks.
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Figure 4.7: t-SNE embedding of raw spline vectors before preprocessing. Geometrically
identical tracks with different positions or orientations are erroneously mapped to distant

regions, highlighting the critical need for invariant preprocessing.

In contrast, Figure 4.8 presents the t-SNE embedding after applying centering and PCA
alignment. The transformation is remarkable; geometrically similar tracks now cluster to-
gether regardless of their original position or orientation. The preprocessing successfully
eliminates irrelevant transformational variations while preserving meaningful structural
relationships. The more symmetric distribution and coherent color gradients in the visual-
ization may indicate that the embedding space now captures intrinsic geometric properties
rather than positional artifacts.
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Figure 4.8: t-SNE embedding after centering and PCA alignment. Geometrically similar
tracks now cluster together, demonstrating the effectiveness of preprocessing in capturing

intrinsic shape characteristics.

The UMAP algorithm exhibits similar improvements through preprocessing, as shown in
Figures 4.9 and 4.10.
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Figure 4.9: UMAP embedding before preprocessing, showing dispersed clustering of geo-

metrically similar tracks.
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Figure 4.10: UMAP embedding after preprocessing, revealing coherent geometric neigh-

borhoods and improved structural organization.

To conduct a critical methodological validation and obtain diagnostic insights, we ana-
lyzed both techniques systematically.

First, the confirmation that track splines can be organized into distinct visual clusters
using both algorithms (as shown in Figures 4.8 and 4.10) provides strong evidence that our
dataset contains inherent, separable geometric structures. When both t-SNE and UMAP
produce similar visual groupings, our confidence in the existence of these groupings as
genuine features of the data increases significantly.

Second, the complementary strengths and limitations of t-SNE and UMAP establish a
crucial comparative framework. While t-SNE excels at preserving local neighborhoods, it
often distorts the global structure of the data. In contrast, UMAP aims to preserve both
local and global relationships effectively.

This comparative analysis serves as a validation process that ensures the robustness and
validity of our behavioral descriptor generation methodology.



The following figures show the UMAP embedding space colored by different track metrics:
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Figure 4.11: UMAP embedding colored by speed entropy.
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Figure 4.12: UMAP embedding colored by acceleration entropy.
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Figure 4.13: UMAP embedding colored by braking entropy.
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UMAP Embedding (voronoi)
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UMAP embedding colored by total overtakes.
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UMAP Embedding (voronoi)
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Figure 4.15: UMAP embedding colored by total overtakes.
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Figure 4.16: UMAP embedding colored by average gap between cars at race end.
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Figure 4.17: UMAP embedding colored by average change in driver positions.

To further illustrate the quality of the resulting embeddings, Figures 4.18 and 4.19 present
samples of track neighborhoods extracted from the UMAP embedding space.
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Figure 4.18: Representative track neighborhoods from UMAP embedding space

within each neighborhood exhibit similar geometric characteristics.

. Tracks
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Figure 4.19: Additional track neighborhoods from UMAP embedding space.



These visualizations demonstrate how tracks within the same neighborhood share common
geometric characteristics—such as similar curvature patterns, overall shape complexity, or
structural motifs—while maintaining distinct individual features. The coherent grouping
validates the effectiveness of the preprocessing pipeline and confirms that the embedding
space successfully captures meaningful geometric relationships between track designs.
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Figure 4.20: UMAP embedding with sample tracks produced using the Voronoi technique

from different regions of the embedding space.

A comparison between the two generation methods reveals the superior expressive power of
the Voronoi representation. As Figure 4.20 illustrates, the Voronoi technique populates a
broad and geometrically diverse region of the embedding space. By contrast, the Convex
Hull technique produced a visibly smaller and less varied archive, resulting in a more
constrained embedding, as shown in Figure 4.21. This visually confirms that the Voronoi
method is more effective at exploring a rich design space.
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Figure 4.21: UMAP embedding with sample tracks produced using the Convex Hull

technique, showing a more constrained design space compared to the Voronoi method.

Given the practical advantages for transforming unseen data, UMAP was selected as the
exclusive method for generating behavioral descriptors later in the experiments. The t-
SNE analysis served its purpose as a crucial cross-validation step, confirming the existence
of local geometric structures and ultimately highlighting UMAP’s strengths. This process
ensures the robustness and validity of our methodological choice. with UMAP is designed
not only to fit a manifold but also to transformational new, unseen data points into the
learned embedding space. t-SNE, by contrast, is primarily a visualization technique and
lacks a direct, built-in mechanism for this task; projecting new data requires non-trivial
extensions. This capability is highly valuable for our generative system. It means that
once the UMAP model is trained, it can be saved and reused to quickly characterize any
newly generated track by projecting its spline into the existing behavioral space without
needing to retrain the entire model.

But before diving into the experiment chapter, we also tried to analyze the two large
clusters and the interpretability of the embeddings generated by both UMAP and t-SNE.
The next subsection explores whether the visual clusters observed in the embeddings
correspond to meaningful differences in track characteristics, and how these dimensions



relate to explicit track metrics.

Clusters and Interpretability

UMAP embeddings consistently displayed distinct visual groups, as presented in the Fig-
ures 4.9 and 4.10. This section investigates whether these apparent visual clusters corre-
spond to meaningful differences in track characteristics.

To quantify the significance of these visual groupings, we applied K-Means clustering
with two clusters to both t-SNE and UMAP embeddings. Remarkably, both dimension-
ality reduction techniques produced identical cluster assignments, suggesting consistent
underlying structure in the data.

Statistical analysis revealed that while clusters were visually distinct, they exhibited only
modest differences in measurable track properties. For instance, t-SNE clusters showed
slight variations in track length (1043.4m vs. 1017.4m), right bends, and left bends. How-
ever, these differences, while statistically detectable, represent minor practical distinctions
that would be barely perceptible to players.

Correlation Analysis and Interpretability To better understand what the embed-
ding dimensions capture, we examined the Spearman correlations between the embedding
coordinates and our explicit track metrics. The analysis showed that UMAP Dimension 1
captures a weak signal related to track scale and complexity, evidenced by a moderate neg-
ative correlation with length (r = —0.34). Weaker positive correlations also appeared with
entropy-based metrics like curvature entropy (r = 0.14) and speed_entropy (r = 0.11).
However, as visualized in Figure 4.23, most other metrics showed negligible correlation,
and UMAP Dimension 2 appeared to capture no single, interpretable feature. The t-SNE
embeddings (Figure 4.22) showed even weaker correlations across the board, with the
strongest being only r = —0.07 with length, reinforcing the challenge of interpretation.
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Figure 4.22: Spearman correlations between t-SNE embedding dimensions and track met-
rics. The weak correlations across both dimensions indicate limited interpretability of the

t-SNE space in terms of explicit track features.
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Figure 4.23: Spearman correlations between UMAP embedding dimensions and track
metrics. Note the weak signal in Dimension 1 and the lack of any significant correlation

in Dimension 2.



This lack of strong, clear correlations reveals a fundamental challenge in using dimension-
ality reduction for track characterization. While UMAP and t-SNE successfully reveal vi-
sual structure in the data, translating this structure into actionable design insights proves
difficult. The weak correlations between embedding dimensions and explicit track descrip-
tors suggest that these dimensionality reduction techniques primarily capture high-level,
holistic geometric relationships rather than specific, interpretable features.

This disconnect between visual clustering and measurable track properties highlights that
while embeddings can effectively group tracks with similar overall shapes, they do not
necessarily capture the specific features that define track design quality or gameplay
experience. The weak correlations indicate that visual similarity in embedding space does
not strongly predict functionally important characteristics such as curvature complexity,
overtaking opportunities, or speed dynamics.

Interestingly, we then found that the empty spaces between two clusters can be filled
with self-overlapping tracks, which are topologically invalid. This finding suggests that
sparse regions in embedding space serve as natural indicators of design quality, with dense
clusters representing geometrically sound track configurations and sparse areas harboring
problematic layouts.

UMAP for Behavioral Descriptor Generation

Despite this interpretability limitation, the majority of our MAP-Elites experiments uti-
lized UMAP dimensions as behavioral descriptors. This choice was motivated by UMAP’s
ability to capture complex, non-linear geometric relationships that are difficult to hand-
engineer through explicit metrics.

UMAP-based descriptors offer several advantages; they preserve geometric similarity
(placing tracks with subtle similarities closer in embedding space), provide dimension-
ality efficiency through a compact two-dimensional representation, and enable non-linear
feature discovery that emerges from the data itself rather than predefined characteristics.

However, this approach sacrifices interpretability. While hand-crafted descriptors like
track length or curvature entropy have direct, understandable meanings, UMAP dimen-
sions lack inherent interpretability beyond geometric similarity. This makes it challenging
to understand precisely what track features drive the evolutionary search, though the po-
tential for discovering novel design relationships that might be overlooked by conventional
metrics justified this trade-off.

4.2. Experiments

This section details the experiments conducted to evaluate the Voronoi and Convex Hull
techniques for racing track generation. The objective was to assess the ability of these
techniques to produce diverse, high-quality tracks that met the design criteria established
in the preliminary analysis. These experiments utilized MAP-Elites with sliding bound-
aries to examine the impact of different track representations on generated maps. The
study sought to evaluate how each representation captures diversity and quality in racing



tracks, and how well it illuminates the feature space.

Based on insights from noisiness, correlation, and clustering analyses, five near-orthogonal
descriptors guided these MAP-Elites experiments: length, curvature entropy, gaps mean,
normalized total overtakes (total overtakes divided by delta), and speed entropy. This
selection provides broad behavioral coverage, capturing distinct aspects of track char-
acteristics including scale, curvature variability, overtaking dynamics, vehicle speed dy-
namics, and gap distribution. This approach also mitigated redundancy and minimized
noise-related biases identified during preliminary assessments. These outcomes informed
subsequent evolutionary experiments, guiding descriptor performance and robustness in
MAP-Elites explorations.

4.2.1. Convex Hull Technique Experiments

We conducted an experiment with a simple formula. Since preliminary analysis suggested
that length was highly correlated with UMAP Dimension 1, its inclusion in the fitness
function was considered potentially redundant. If the behavioral descriptors already en-
courage diversity in track size and shape, the fitness function could be simplified to focus
purely on a gameplay-centric measure of quality. We therefore tested a configuration with
a fitness function consisting only of the normalized total overtakes score:

total overtakes
peoTe (delta+10-3) (43)

Here, delta represents the sum of positional discrepancies (deltaX + deltaY), penalizing
tracks with poor geometric closure. This formulation emphasizes overtaking opportunities
while rewarding stable, well-formed tracks. For behavioral descriptors, we selected UMAP
Dimension 1 and speed_ entropy. This choice was deliberate: UMAP Dimension 1 acts as
a data-driven proxy for overall geometric complexity, while speed entropy was identified
as a highly orthogonal feature capturing the dynamic driving experience.
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Figure 4.24: MAP-Elites archive using UMAP Dimension 1 and speed entropy as de-

scriptors.

The resulting archive (Figure 4.24) confirmed our hypothesis. A clear pattern emerged
where regions of low speed entropy (indicating simpler, less dynamic tracks) struggled to
produce solutions with high overtaking scores. This is an expected and logical outcome,
as tracks with low variability naturally offer fewer opportunities for pilots.
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Figure 4.25: QD Score evolution for the Convex Hull experiment over 1000 iterations.

4.2.2. Voronoi Technique Experiments

The initial experiment was then replicated using the Voronoi technique to evaluate its
performance under the same conditions and allow for a direct comparison. We used
the identical fitness function based on normalized overtakes and the same behavioral
descriptors (UMAP Dimension 1 and speed entropy):

total overtakes
seore (delta + 1073) (44)
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Figure 4.26: MAP-Elites archive for the Voronoi technique, using UMAP Dimension 1

and speed_ entropy as descriptors.
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Figure 4.27: QD Score evolution for the Voronoi experiment over 1000 iterations.

As shown in Figure 4.26, the resulting archive for the Voronoi technique strongly corrob-
orated the results of the Convex Hull experiment. It likewise revealed that tracks charac-
terized by low speed entropy were unable to achieve high fitness scores. This consistent
outcome across both generative representations provides robust evidence that a track’s
dynamic variability is fundamentally linked to its potential for facilitating overtaking
maneuvers, validating our choice of speed entropy as an effective behavioral descriptor.

Main Experiment and Operator Analysis

This foundational understanding confirmed our decision to proceed with a more com-
prehensive setup for the main experiments. We tried a more elaborated fitness function
that incorporates multiple behavioral descriptors, allowing for a richer exploration of the
design space. The fitness function was defined as follows:

total overtakes
(delta + 10-3)

score = length + right _bends + (4.5)

Within this setup, a key question was to understand the individual contributions of our
novel crossover operators. To investigate this, we conducted a comparative analysis be-
tween the two primary methods: the Random-Line Partitioning Method and the Relative
Reconstruction Method. This allowed us to isolate their effects and quantify their respec-
tive strengths in exploring the design space.
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Figure 4.28: Evolution of Archive Size and QD Score for Random-Line Partitioning

crossover operator over 1000 iterations.
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Figure 4.29: Evolution of Archive Size and QD Score for Relative Mapping crossover

operator over 1000 iterations.



The comparison revealed that the Relative Reconstruction Method (Figure 4.29) achieved
better results compared to the Random-Line Partitioning Method (Figure 4.28).

Final Archive and Qualitative Analysis

Overall, the Voronoi method demonstrated superior efficiency in archive coverage and
diversity compared to the Convex Hull approach, an advantage anticipated from its greater
geometric expressiveness. The final archive is shown in Figure 4.30. This run achieved a
size of 532 elites with 59.11% coverage of the behavioral space.
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Figure 4.30: Final MAP-Elites archive scatterplot for Voronoi tracks using the Relative
Reconstruction Method at 1000 iterations.

The following collection of high-fitness tracks from this archive demonstrates the diversity
and quality achieved.



Figure 4.31: Example high-fitness track (ID: 984.11). Key metrics: Length—=1509.22m,
Overtakes=28, Curvature Entropy=3.65, Speed Entropy=2.89.

Figure 4.32: Example high-fitness track (ID: 985.11). Key metrics: Length—1698.80m,
Overtakes=35, Curvature Entropy=3.78, Speed Entropy=2.73.



Figure 4.33: Example high-fitness track (ID: 983.77). Key metrics: Length—=1210.69m,
Overtakes=25, Curvature Entropy=3.94, Speed Entropy=4.46.

Figure 4.34: Example high-fitness track (ID: 956.95). Key metrics: Length=716.09m,
Overtakes=2, Curvature Entropy=4.04, Speed Entropy=3.19.



Figure 4.35: Example high-fitness track (ID: 995.44). Key metrics: Length=547.69m,
Overtakes=14, Curvature Entropy=3.32, Speed Entropy=4.46.

Figure 4.36: Example high-fitness track (ID: 973.63). Key metrics: Length—=2447.02m,
Overtakes=61, Curvature Entropy=3.35, Speed Entropy=4.21.



Figure 4.37: Example high-fitness track (ID: 963.57). Key metrics: Length—=1461.58m,
Overtakes=5, Curvature Entropy=3.87, Speed Entropy=1.81.

Figure 4.38: Example high-fitness track (ID: 957.58). Key metrics: Length=924.49m,
Overtakes=1, Curvature Entropy=3.83, Speed Entropy=4.03.



Figure 4.39: Example high-fitness track (ID: 504.22). Key metrics: Length—=1330.63m,
Overtakes=366, Curvature Entropy=3.76, Speed Entropy=4.03.

Figure 4.40: Example high-fitness track (ID: 970.69). Key metrics: Length—2451.16m,
Overtakes=5, Curvature Entropy=3.37, Speed Entropy=2.08.

A notable discovery emerged from inspecting this final archive. A track with a high fit-
ness score was found to be topologically invalid, exhibiting self-intersection (Figure 4.41).
This observation validates the insight from our UMAP analysis: empty or sparsely pop-
ulated regions in the latent space often correspond to geometrically problematic designs.
Because the TORCS engine does not rigorously validate all topological properties, such



flawed tracks can complete simulations and receive high fitness scores, creating mislead-
ing evaluations. This finding underscores the importance of integrating robust geometric
checks into the genotype-to-phenotype mapping process to ensure the search algorithm
focuses its efforts on valid and meaningful regions of the design space.

Figure 4.41: Track (ID: 937.93) exhibiting self-intersection. While the simulation com-
pleted without errors, this track represents a topological invalidity that highlights limita-

tions in current validation mechanisms.
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5 ‘ Conclusions and Future

Developments

In this thesis, we successfully demonstrated that MAP-Elites is a powerful tool for the
procedural generation of racing tracks. Using the TORCS open-source racing game, we
developed a system that leverages evaluation functions computed from simulated racing
competitions to guide the evolutionary search towards a diverse archive of high-quality
tracks.

We designed and implemented an end-to-end pipeline that seamlessly integrates a Node.js
backend for track generation, Docker-containerized TORCS instances for parallel simula-
tion, and a Python-based evolutionary engine powered by the Pyribs library. We inves-
tigated two distinct genotype representations—Convex Hulls and a novel method based
on Voronoi diagrams—and developed tailored crossover and mutation operators for each.
Furthermore, we explored the feature space of competitive racing tracks, defining relevant
measures to characterize their geometric and gameplay properties.

A cornerstone of this work was a rigorous preliminary analysis to identify and mitigate the
inherent noisiness of emergent gameplay metrics. These initial experiments revealed the
high sensitivity of certain metrics, e.g., total overtakes, to minor artifacts like positional
discrepancies at the start/finish line. This critical insight led to the development of a
normalized overtaking score that proved far more reliable for evaluating track quality.
This data-centric approach to defining behavioral descriptors and the fitness function
was crucial for guiding the evolutionary search effectively. Finally, we pioneered the
use of dimensionality reduction techniques, specifically UMAP, to automatically generate
behavioral descriptors from raw track spline data. A key observation was that sparse or
empty regions in the resulting latent space often corresponded to topologically invalid
tracks, providing a valuable insight into the structure of the design space.

While the current research provides a robust framework, it is important to acknowledge
its limitations, which in turn illuminate clear directions for future work.

A primary limitation stems from the track representation within TORCS and Speed
Dreams itself. The XML format, which encodes a track as a sequence of segments, is
straightforward but lacks support for crucial features like elevation changes and banked
corners. This inherently restricts the generated content to flat, two-dimensional layouts.
Furthermore, this sequential definition makes it difficult to guarantee perfect track closure.
This often results in a small but measurable "delta error"—a gap between the start and
end points—which, as our analysis showed, can introduce noise and corrupt the evaluation



of gameplay metrics.

The reliance on TORCS’s built-in Al for gameplay simulation also presents a notable gap
between automated evaluation and human experience. While necessary for evaluating
thousands of tracks automatically, these bots cannot fully replicate the nuanced, adaptive,
and often unpredictable behavior of human players. Consequently, a track that is "fit"
for an AI might not be optimally enjoyable for a human. Future work could integrate
human evaluation within a co-creative setup, allowing players to provide direct feedback
and guide the evolutionary search more effectively.

Finally, the definition of "fitness" itself is context-dependent and represents a signifi-
cant challenge. The fitness function developed in this thesis is tailored for competitive,
simulation-style racing, prioritizing metrics like overtaking opportunities. However, game-
play objectives can vary dramatically across different genres. In a combat racing game,
for instance, a "good" track might be one that facilitates strategic use of weapons, with
well-placed power-ups, choke points, and areas of cover. The fitness function for such a
game would be entirely different, highlighting that a truly generalist track generator must
be able to adapt its definition of quality to the specific gameplay experience it aims to
create.

Directions for future research emerge:

¢ Overcoming Framework Limitations by Migrating to a Modern Engine:
A crucial next step is to overcome the inherent limitations of the TORCS framework
by migrating the pipeline to a modern game engine. Such engines would resolve the
geometric and topological issues identified in this work—including self-intersections
and track closure errors—through robust, native 3D geometry handling, eliminating
the need for algorithmic workarounds. More importantly, this transition would
dramatically expand the creative design space. It would enable the procedural
generation of true 3D tracks with complex elevation changes and banked corners, as
well as the surrounding environment (terrain, barriers), leading to far more realistic
and immersive experiences. This represents a fundamental shift from patching the
constraints of an older system to fully leveraging the power of modern procedural
content generation.

e Enhancing Evaluation with Human-in-the-Loop: To better align generated
content with human enjoyment, an interactive evolution approach could be adopted.
Such a system would allow a human player to rate tracks or specific segments, inte-
grating this subjective feedback directly into the fitness score to guide the algorithm
toward more engaging designs.

e Alleviating the Simulation Bottleneck: To improve computational efficiency,
surrogate models (e.g., trained neural networks) could be developed. These models
could learn to predict a track’s fitness score based on its genotype or simple geo-
metric features, providing a rapid evaluation for most candidates and reserving full
simulation for only the most promising individuals.

e Exploring Advanced QD Algorithms: The adoption of cutting-edge algorithms
like Descriptor-Conditioned Gradients (DCG-MAP-Elites) could yield significant ef-



ficiency gains. If the track generation process can be made differentiable, gradients
could guide the search towards promising regions of the design space far more di-
rectly than is possible with mutation alone.

In conclusion, this thesis has successfully laid the groundwork for using Quality Diversity
to automate and enhance the creative process of racing track design. The developed
pipeline and the insights gained from our experiments provide a solid foundation upon
which future research can build, pushing the boundaries of what is possible in procedural
content generation and paving the way for endlessly diverse, engaging, and personalized
gaming experiences.
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A_ ‘ Source Code

This thesis is supported by a full implementation of the procedural content generation
pipeline. The complete source code, including the MAP-Elites implementation, track
generation algorithms, Docker configurations, and telemetry analysis tools, is publicly
available at the following GitHub repository:

https://github.com /martinopiaggi/Quality-Diversity-for-Racing-Track-Design

Furthermore, the web-based visualization tool, which was instrumental for the develop-
ment and debugging of the genetic operators (as shown in Figures 3.6, 3.7, and 3.8),
is deployed as a live web application. It allows for hands-on exploration of the track
generation process and can be accessed at:

https://pcgtrack.netlify.app


https://github.com/martinopiaggi/Quality-Diversity-for-Racing-Track-Design
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